BRB-ArrayTools Workshop

* Overview of gene expression analysis (2hr)

* |ndividual consultation as needed
— Biometric Research Branch statisticians
— BRB-ArrayTools Development Team



http://linus.nci.nih.gov/brb

* http://linus.nci.nih.gov/brb
— Powerpoint presentations and audio files
— Reprints & Technical Reports
— BRB-ArrayTools software
— BRB-ArrayTools Data Archive



Assumptions

You are somewhat familiar with BRB-
ArrayTools

You have brought your own laptop
You have installed BRB-ArrayTools

You have imported (collated) your data
into BRB-ArrayTools




BRB-ArrayTools 3.5 alpha

 Available on cd for you to try if you'd like

« Contains
— Data import wizzard
— Data analysis wizzard
— Enhanced survival risk-group prediction tool



Take Time to Clarify Your Specific
Objectives

« Study Design
* Analysis Strategy



Good Microarray Studies Have
Clear Objectives

« Class Comparison

— Find genes whose expression differs among
predetermined classes

e Class Prediction

— Prediction of predetermined class (phenotype)
using information from gene expression profile

* Class Discovery

— Discover clusters of specimens having similar
expression profiles

— Discover clusters of genes having similar
expression profiles



Class Comparison and Class

Prediction

* Not clustering problems

— Global similarity measures generally used for
clustering arrays may not distinguish classes

— Don’t control multiplicity or for distinguishing
data used for classifier development from
data used for classifier evaluation

* Supervised methods

* Requires multiple biological samples from
each class



Levels of Replication

* Technical replicates

— RNA sample divided into multiple aliquots and re-
arrayed

* Biological replicates
— Multiple subjects
— Replication of the tissue culture experiment



 Biological conclusions generally require
iIndependent biological replicates. The
power of statistical methods for microarray
data depends on the number of biological

replicates.

* Technical replicates are useful insurance
to ensure that at least one good quality
array of each specimen will be obtained.



Microarray Platforms for
Developing Predictive Classifiers

» Single label arrays
— Affymetrix GeneChips

* Dual label arrays
— Common reference design
— Other designs



Common Reference Design

RED | Ay A; B, B,

GREEN R R R R

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A

B, = i1th specimen from class B
R = aliquot from reference pool



The reference generally serves to control
variation in the size of corresponding spots
on different arrays and variation in sample
distribution over the slide.

The reference provides a relative measure of
expression for a given gene in a given
sample that is less variable than an absolute
measure.

The reference is not the object of
comparison.

The relative measure of expression will be
compared among biologically independent
samples from different classes.
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Balanced Block Design

RED | A, B, A, B,

GREEN | B, A, B, A,

Array 1 Array 2 Array 3  Array 4

A, = ith specimen from class A
B, = ith specimen from class B



x Patient Array

C

SRl v a8 Class comparison between groups of arrays

20 Sporadic
1 BRCAI
A BRCAT
3 BRCAT
7 BRCAT
2 BRCAT
4 BRCA
10 BRCAY
8 BRCAZ
8 BRCAZ
22 BRCAZ
16 Sporadic
17 Sporadic
15 Sporadic
18 Sporadic
19 Sporadic
21 Sporadic
B BRCAT
13 BRCAY
14 BRCAY
11 BRCAY
12 BRCAY

This procedure finds genes differentially expressed among classes of samples, The classes are pre-defined based
on columns af the experiment descripkor file, Each array should represent one sample, either as a single-label
experiment or as a dual-label experiment using a common reference. For non-reference designs, consider using the
kool for class comparison bebween red and green samples.

— Experimental design:
— Caolumn defining classes:

=

' Unpaired samples:

[ Block by:

-

[ Awerage over replicates of !

-

" Paired samples:
— Pair samples by

— Find gene lists determined hy:

%' significance threshold of univariate tests: I 0,001

" Restriction on proportion of False discoveries:

Maximurm proportion of false discoveries: I o1

Confidence level (between 0 and 100%:): I a0

™ Restriction on number of False discoveries:

Maximurm number of False discoveries: I 10

Confidence level (between 0 and 100%:): I a0

— Yariance model:

[ Use random variance model For univariate tests,

MOTE: This analysis is currently |

set ko run on all genes passing Select gene subsets
the filker,

Cancel |

descriptors ¢ Filtered log raf]

COpkions Reset | Help




Class Comparison Blocking

 Paired data

— Pre-treatment and post-treatment samples of same
patient

— Tumor and normal tissue from the same patient

» Blocking
— Multiple animals in same litter

— Any feature thought to influence gene expression
« Sex of patient
« Batch of arrays



Technical Replicates

* Multiple arrays on alloquots of the same
RNA sample

» Select the best quality technical replicate
or

* Average expression values



Simple Control for Multiple Testing

 If each gene is tested for significance at level o
and there are n genes, then the expected
number of false discoveriesis n o .

— e.g. ifn=1000 and «=0.001, then 1 false discovery
— To control E(FD) < u
— Conduct each of k tests at level o = u/k



False Discovery Rate (FDR)

FDR = Expected proportion of false
discoveries among the tests declared

significant
Studied by Benjamini and Hochberg
(1995):



Not rejected | Rejected Total
True null 890 10 900
hypotheses False
discoveries
False null 10 90 100
hypotheses True
discoveries
100 1000




If you analyze n probe sets and
select as “significant” the k genes
whose p < p*

s FDR~np*/Kk



Limitations of Simple Procedures

* p values based on normal theory are not
accurate in the extreme tails of the distribution

 Difficult to achieve extreme quantiles for
permutation p values of individual genes

* Multiple comparisons controlled by adjustment
of univariate (single gene) p values may not take
advantage of correlation among genes



Additional Procedures

« "SAM” - Significance Analysis of Microarrays
— Tusher et al., PNAS, 2001
— Estimate FDR
— Statistical properties unclear

* Multivariate permutation tests
— Korn et al., 2001 (http:/linus.nci.nih.gov/brb)
— Control number or proportion of false discoveries
— Can specify confidence level of control



Multivariate Permutation Procedures
(Korn et al., 2001)

Allows statements like:

FD Procedure: We are 95% confident that the
(actual) number of false discoveries is no
greater than 5.

FDP Procedure: We are 95% confident that
the (actual) proportion of false discoveries
does not exceed .10.



t-test Comparisons of Gene
Expression for gene |

* X~N(u;; , 5°) for class 1
* X~N(u;, , 5%) for class 2

* Hy 11 = 1y



Estimation of Within-Class
Variance

- Estimate separately for each gene
— Limited degrees-of-freedom (precision) unless number of

samples is large

— Gene list dominated by genes with small fold changes and

small variances

* Assume all genes have same variance
— Poor assumption

 Random (hierarchical) variance model

Wright G.W. and Simon R. Bioinformatics19:2448-2455,2003

Variances are independent samples from a common distribution; Inverse gamma
distribution used

Results in exact F (or t) distribution of test statistics with increased
degrees of freedom for error variance

For any normal linear model



x Patient Array

C

EER It vk 3= Class comparison between groups of arrays
20 Sporadic
1 BRCAI This procedure finds genes differentially expressed among dasses of samples. The dasses are pre-defined based
5 BRCAI on columns af the experiment descripkor file, Each array should represent one sample, either as a single-label
3 BRCAT experiment or as a dual-label experiment using a common reference. For non-reference designs, consider using the
kool for class comparison bebween red and green samples.
7 BRCAI
2 BRCAT Class Comparison Options
4 BRCAT — Experimental des
10 BRCAZ -~ Column defining c [ Perform univariate permutation tests:

9 BRCAZ I Bk I 0,001
8 BRCAZ Mumber af permutations For univariate test: 10000

22 BRCAZ
16 Sporadic

17 Sporadic [ Block bry: fies: | o1

15 Sporadic

18 Sporadic rumber of permutations for multivariate test: I 1000 ol I an

& Unpaired samp Foveries!

19 Sporadic .
21 Sporadic :

O BRLAT I™ average ove] | I~ Perform GO Observed vs. Expected analvsi ; IID—
13 BRCAZ J erform cerved ve, Expected analysis. S —~

14 BRCAZ . I

11 BRCAZ I: — Mame to use For oukput Files:

12 BRCAZ

I ClassComparison

ke tests,
" Paired samples
— Pair samples by oK, Cancel Reset Help
| g | SO O T O A e e e oeleck gene subsets |
the filker,
I Cptions Reset | Help

descriptors ¢ Filtered log raf,



x Patient Array

=]

B C ] E F ]
BRCAT v BRCAZ v Sporadic |BRCAL Y BRCAZ  BRCA1 v Sporadic BRCAZ v Sporadic BRCAT v not

E? gggﬁm Significance Analysis of Microarrays (SAM)

5 BRCAI i i ) }

3 BRCAI S4M finds genes differentially expressed among classes of samples. The classes are pre-defined based on columins

af the experiment descriptor File,

7 BRCAI

2 BRCAI

4 BRCAT — Experimental designn ———— — Parameters
10 BRCAZ — Calurn defining classes:

9 BRCAZ I LI Target proportion of False discoveries: I 0.1
22 gggﬁ Mumber of Permutations: 100
16 Sporadic * Unpaired samples: Percentile: I—BD
17 Sporadic
15 Sporadic ™ awverage over replicates of:
18 Sporadic
19 Sporadic | ;I _
21 Sporadic [ Perform Gene Ontology Observed ws, Expected analysis
12 gggg " Paired samples:
14 BRCAZ Pair samples by — Mame ko use Far oukput Files:
11 BRCAZ
12 BRCAZ —I SAM

MOTE: This analysis is currently set ta run on all genes passing the Filker, Select gene subsets |
] 4 Cancel | Reset | Help

oy

descriptors / Fitered log ratic 4/ Gene annotations 4 Gene identifiers /




x Patient Array

=17

Gene Set Expression Comparison

C

BRCAT v BRCAZ v

20 Sporadic The "Gene Ontology” option finds Gene Ontology categories that have higher than expected number of genes

1 BRCAT differentially expressed among dasses of samples. The number of comparisons is the number of G0 cateqories and hence

the mulkiple testing problem is reduced, The "Pathway” option finds patbwways that have higher than expected number of

5 BRCAT genes differentially expressed among classes of samples, The number of comparisons is the number of pathways

3 BRCAT tepresented in the dataset and hence the mulkiple testing problem is reduced, The "User gene lists" option finds Gene

T BRCAT Lists that have higher than expected number of genes differentially expressed among dasses of samples, All classes are

2 BRCA pre-defined based on columns of the experiment descriptor File.

4 BRCAI
10 BRCAZ — Experimental designn ——————  Gene set determined by:

9 BRCAZ ~ Column defining classes: % Gene Onkology " Pathways " User gene lists

g BRCAZ ;I
22 BRCAZ — Find pathway lists determined by:
16 Sporadic Human: ¢ ginCarts Pathways

i v i g

17 Spnrad!c * |npaired samples € KEGG Pathways
15 Sporadic
18 Sporadic [ average over replicates of € Broad/MIT Pathways and signatures
19 Spnrad?c I ;I Mouse: { BioCarka Pathways
21 Sporadic

B BRCAI
13 BRCAZ Significance threshold of permutation tesks; I 0,005
14 BRCAZ i paired samples:
11 BRCAZ — Pair samples by:
12 BRCAL ;I MOTE: This analysis is currently set

ko run on all genes passing the filker, Select gene subsets |
— Yariance model: — Mame to use for output files:
7 =& random variance model for
Linivariate tests, GO Campatison
Cancel | Cptions Reset Help

descriptors ¢ Filtered log g

L



Gene Set Expression Comparison

Compute p value of differential expression for each gene
In a gene set (k=number of genes)

Compute a summary (S) of these p values

Determine whether the value of the summary test
statistic S is more extreme than would be expected from
a random sample of k genes (probe-sets) on that
platform

Two types of summaries provided
— Average of log p values

— Kolmogorov-Smirnov statistic; largest distance between the
cumulative distribution of the p values and the uniform
distribution expected if none of the genes were differentially
expressed



Gene Set Expression Comparison

» p value for significance of summary
statistic need not be as extreme as .001
usually, because the number of gene sets
analyzed is usually much less than the
number of individual genes analyzed

» Conclusions of significance are for gene
sets in this tool, not for individual genes



Comparison of Gene Set
Expression Comparison to O/E
Analysis in Class Comparison

* (Gene set expression tool is based on all
genes in a set, not just on those
significant at some threshold value

« O/E analysis does not provide statistical
significance for gene sets



x Patient Array

=1e9
o | __E__ | _F | G

C

BRCAT v BRCAZ v 5 .
20[Sporadic & Class comparison between red and green samples
1 BRCA
£ BRCAI This kool is For finding genes differentially expressed among bwo classes For dual-label arravys in which each array
contains a sample from one class and a sample from the aother class, The samples From one class need not be
3 BRCAT labeled with the same label on all arraws; generally it is best to have complete balance of labels and class, This
7 BRCA koal requires that each biological sample appear either on only ane array or else always paired with the same
2 BRCAI sample from the other class, As a special case, this bool allows to compare samples of one cass with the
reference samples. In this case, reference samples should contian the key ward "reference’ in the Red-labled or
4 BRCAT Green-labeled sample ID column of the Experiment Descriptors worksheet,
10 BRCAZ
9 BRCAZ
g BRCAZ — Experimental design: ———— — Find gene lists determined by:
— Red-labeled sample ID column: ——
22 BF‘.C’&Q_ * Significance threshold of univariate kests: I 0,001
16 Sporadic I =
17 Sporadic " Restriction on propartion of False discaveries:
15|Sparadic [~ Green-labeled sampls ID column: — Maximum proportion of False discoveries: I
18 Sporadic | | - Hiy
18 Sporadic Confidence level (between 0 and 100%): I &
21 Sporadic
B BRCAT ~ Red-labeled sample class column: — " Restriction on nurnber of False discoveries:
13 BRCAZ I ;I Maximum number of False discoveries: I 10
14 BRCAZ i
11 BRCAD Confidence level (between 0 and 100%:); I &
— fareen-labeled sample cass colurmn —
12 BRCAZ
I ;I — ¥ariance model:
I¥ Use random variance model for univariate bests,
FOTE: This analysis is currently set to run on all genes passing the Filker, Select gene subsets |
K, Cancel | Cpkions Reset | Help
-

descriptors / Filtered log ratio g GENE SrnOTaion: 4 Gere ertners 7




x Patient Array

B

B C ] E F ] ;|
ERCA1 v BRCAZ v Sporadic | BRCAT Y BRCAZ  BRCAT v Sporadic ERCAZ v Sporadic BRCAT v notf
20 Sporadic notBRCAI

1 BRCAI BRCAI BRCAT BRCA1

5 BRCAT Quantitative Trait Analysis

3 BRCA1

7 BRCAI ) ' _ : - - . .

2 BRCAT TThis tool finds genes that are significanthy correlated with a specified quantitative variable {trait),

4 BRCA
10 BRCAZ — Experimental design: ———— — Find gene lists determined by:

9 BRCAZ Cuantitative krait column; ———

g BRCAZ I ﬂ % Significance threshold of univariate tests: I 0,001
22 BRCAZ
16 Sporadic " Restriction on proportion of False discoveries:

17 Sporadic * Use Spearman Correlation Test Mazximurn propaortion of False discoveries: I o1
13 gEE::j:E ™ Use Pearson Correlation Test Confidence level (between 0 and 100%:); I &
19 5 di '

51 SEE:Zd:E I™ &verage over replicates of: " Restriction on number of False discoveries:

E BRCAT | _I Maximum number of False discoveries: I 10
13 BRCAZ Confidence level (between 0 and 100%:); I &
14 BRCAZ
11 BRCAZ
12 BRCAZ

MOTE: This analysis is currently set ko run on all genes passing the Filber, Select gene subsets |
(0]4 Cancel | Cpkions | Reset | Help
—
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x Patient Array

B

B C 1] E F & N
ERCA1 v BRCAZ v Sporadic | BRCAT Y BRCAZ  BRCAT v Sporadic ERCAZ v Sporadic BRCAT v notf
20 Sporadic notBRCAI
1 BRCAI BRICA BRCA BRCA

5 BRCAT Find Genes Correlated with Survival

3 BRCAT

7 BRCAI . . _ . ) )

This procedure tests Far genes which are significantly associated with survival,

2 BRCA] F' ? ? i

4 BRCA — Experimental design: ————— — Find gene lists determined by:
10 BRCAZ — Skakus column:

9 BRCAZ (0 = censored, 1 = death) % significance threshold of univariate tests: I 0.001

g BRCAZ I ﬂ
22 BRCAZ
16 Sporadic . o " Restriction on propartion of False discoveries:
17 Sporadic [~ Column defining survival tme: Mairum propartion of False discoveries: I o1
15 Sporadic I ;I ,

e Corfidence level (between 0 and 100%:0; I

18 Sporadic =
19 Sporadic
21 Sporadic [ Average over replicates of: " Restriction on number of False discoveries:

B BRCAI Maximurn nurmber of False discoveries:

N T
ISIES= | ;I Canfid level (bet 0 and 100%:): I
14 BRCAD onfidence level (between 0 an ot an
11 BRCAZ
12 BRCAZ
MOTE: This analysis is currently set ko run an all genes passing the Ffilker, Select gene subsets |
Ik Cancel | Cptions | Reset | Help

|

-

oy

descriptors / Fitered log ratic 4/ Gene annotations 4 Gene identifiers /




Statistical Methods Appropriate for
Prediction are Different than Those

Appropriate for Gene Finding

Demonstrating statistical significance of prognostic
factors is not the same as demonstrating predictive
accuracy.

Demonstrating goodness of fit of a model to the data
used to develop it is not a demonstration of predictive

accuracy.
Statisticians are used to inference, not prediction

Most statistical methods were not developed for p>>n
prediction problems



Components of Class Prediction

* Feature (gene) selection
— Which genes will be included in the model

* Select model type

— E.g. Diagonal linear discriminant analysis,
Nearest-Neighbor, ...

 Fitting parameters (regression coefficients)

for model
— Selecting value of tuning parameters



Feature Selection

« (Genes that are differentially expressed among the
classes at a significance level o (e.g. 0.01)

— The o level is selected only to control the number of genes in the
model



Feature Selection

« Small subset of genes which together give
most accurate predictions
— Combinatorial optimization algorithms
» Genetic algorithms

* Little evidence that complex feature
selection is useful in microarray problems
— Failure to compare to simpler methods

— Some published complex methods for
selecting combinations of features do not
appear to have been properly evaluated



Linear Classifiers for Two
Classes

1(X) = Y wx

icF
X = vector of log ratios or log signals
F = features (genes) included in model
w. = weight for i'th feature

decision boundary I(x) > or <d



Linear Classifiers for Two Classes

* Fisher linear discriminant analysis
— Requires estimating correlations among all genes
selected for model
« Diagonal linear discriminant analysis (DLDA)
assumes gene expressions are uncorrelated

« Compound covariate predictor (Radmacher)
and Golub’s method are similar to DLDA in
that they can be viewed as weighted voting of
univariate classifiers



Linear Classifiers for Two Classes

« Compound covariate predictor

Yi(l) I Yi(z)

W, oC —~
(oF

Instead of for DLDA

Yi(l) N Yi(z)

W oC ~
O



Linear Classifiers for Two Classes

« Support vector machines with inner
product kernel are linear classifiers with
weights determined to separate the
classes with a hyperplain that minimizes
the length of the weight vector



Support Vector Machine

minimize » w;
i

subject toy. (v_v'g”) + b) >1

where y; =+1 for class 1 or 2.



When p>>n

* |t is always possible to find a set of
features and a weight vector for which the
classification error on the training set is
Zero.

* Why consider more complex models?



Myth

« Complex classification algorithms such as
neural networks perform better than
simpler methods for class prediction.



* Artificial intelligence sells to journal
reviewers and peers who cannot
distinguish hype from substance when it
comes to microarray data analysis.

« Comparative studies have shown that
simpler methods work as well or better for
microarray problems because they avoid
overfitting the data.



Other Simple Methods

Nearest neighbor classification
Nearest k-neighbors

Nearest centroid classification
Shrunken centroid classification



Nearest Neighbor Classifier

« To classify a sample in the validation set,
determine it's nearest neighbor in the training
set; I.e. which sample in the training set is its
gene expression profile is most similar to.

— Similarity measure used is based on genes
selected as being univariately differentially
expressed between the classes

— Correlation similarity or Euclidean distance
generally used
» Classify the sample as being in the same
class as it's nearest neighbor in the training
set



Nearest Centroid Classifier

* For a training set of data, select the genes that are
informative for distinguishing the classes

« Compute the average expression profile (centroid) of
the informative genes in each class

« Classify a sample in the validation set based on
which centroid in the training set it's gene expression
profile is most similar to.



Other Methods

* Top-scoring pairs

— Claim that it gives accurate prediction with
few pairs because pairs of genes are selected
to work well together

 Random Forrest
— Very popular in machine learning community
— Complex classifier



When There Are More Than 2
Classes

* Nearest neighbor type methods

* Decision tree of binary classifiers



Decision Tree of Binary Classifiers

Partition the set of classes {1,2,...,K} into two disjoint subsets S, and
S,
Develop a binary classifier for distinguishing the composite classes
S,and S,

« Compute the cross-validated classification error for

distinguishing S, and S,

Repeat the above steps for all possible partitions in order to find the
partition S,and S, for which the cross-validated classification error is
minimized
If S,and S, are not singleton sets, then repeat all of the above steps
separately for the classes in S,and S, to optimally partition each of
them
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Class prediction

Age Code Medulo ve Glio vs PMRhabdo valMedulo vs Medulo vs AT/RT

This procedure computes a classifier which can be used for predicting the class of a new sample.

— Calumn defining classes:

| =

[ Use random variance model for univariate tests,

[ aAverage over replicates of:

— iaene selection

' Individual genes:

| I~

[™ Arrays are paired between classes,

Pair samples by
| -

— Prediction methods:

v Compound covariate predictor
[V Diagonal linear discriminant analysis
V¥ K-nearest neighbars {For k=1 and 3}

[ Mearest centroid

v Support vectar machines

% significant univariately at alpha level: | 0,001

Cptimize over the grid of alpha-levels
rand cross-validate optimization)

Wikh univariate misclassification 0.2
rake below:

r With Fold-ratio of geometric means
between bwo classes exceeding:

™ Gene pairs

AIRERE

mumber of pairs selecked by the

"Greedy pairs” method: 23

MOTE: This analysis is
currently sek ko run on all Select gene subsets

genes passing the filker,

(04 Cancel |

COpkions | Reset | Help
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Class prediction

Age Code Medulo ve Glio vs PMRhabdo valMedulo vs Medulo vs AT/RT

This procedure computes a classifier which can be used for predicting the class of a new sample.

Class Prediction Options

— iCross-validation method:

* | eave-one-out validation

- - Fold walidation
Repeated imes

" 0,632 bootstrap validation

r Do skatistical significance kest of cross-walidated

mis-classification rake.,

Mumber of permutations For

significance test of cross-validated

mis-classification rake:

1o

[ use separake kesk sek:
Colurnn conkaining “kraining”,

"predict”, "exclude” labels;

Mame ko use For oukput files:

I ClassPredickion

Ik | Cancel |

Opkions |

v Support vectar machines

————

genes passing the filker,

(04 Cancel |

I Opkions

Reset |

Help

I Wedaulloblastoma
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Class prediction

Age Code Medulo ve Glio vs PMRhabdo valMedulo vs Medulo vs AT/RT

This procedure computes a classifier which can be used for predicting the class of a new sample.

Class Prediction Options

* | eave-one-ouk

r - Fiol

Repeated [

0,632 bootstray

[ use separakte kg

gL R Class Prediction Options 2

— Support veckor machine parameters: ——————  Jeross-validated

Caosk (kuning parameker]: I 1

Wieight of misclassifications in Class
1 relative to Class 2 (where Class 1 100
denotes the class label which would

come Firsk in an alphanumetic sorting I
1
af the class labels):

Colurnn conkainin

I

“mredict”, "excly v iUse internal Fixed random seed,

0.4 | Reset |

Ik | Cancel

Cpkions I Reset | Help

B = o= imm iy ni e
V¥ Support vector machines genes passing the filter, |
oK Cancel | Options | Reset | Help
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Prediction Analysis of Microarrays (PAM)

ATHT
ATHT

predictions,

This tool is an inkerface to the Prediction Analysis of Microarrays (PAM) Package developed by
R Tibshirani, T. Hastie, B, Marasimha and G, Chu, Shrunken centroids algorithm is used For class

— Calumn defining classes:

— Mame to use for output Files:

El

| pam

[ Use separate test set

Column containing "training”, "predict”,
"exclude” labels:

k|

MOTE: This analwsis is currently set bo run on
all genes passing the Filker,

Select gene subsets

[~ awverage over replicates of

-]

(04 Cancel |

Reset | Help

0 kedulloblastoma
3 1 Medulloblastoma
1 Medulloblastoma
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This tool compukes a binary tree classifier which can be used for predicting the class of a new sample, At
each stage (tree node), classes are divided inka bwo groups, Cross-validation mis-classificakion rate is used
ko characterize the quality of the division. A division with the lowest mis-classification rate is used as a
node of the kree, Then, procedure is repeated for each branch with bwo or more classes,

— Calumn defining classes:

| El

[~ use separate test set

Column containing “training”,
"exclude’ [abels:

| =

predict”, ———

— Prediction method:

' Compound covariate predictor
" K-nearest neighbors (for k=11
" K-nearest neighbors (for K=3)
" Mearest centroid

e Support wector machines

" Diagonal inear discriminant analysis

[~ awverage over replicates of

| I~

MOTE: This analwsis is
currently sek bo rum an

Select gene subsets

— Predictars should only include genes:

{* Significant univariately at level: I 0.001

With univariate

misclassification rate below: .25

Wyith Fold-ratio of geometric
[™ means between bwo classes

I

all genes passing the exceeding:
Filker,
(04 Cancel | Qpkions | Reset | Help
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=
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Binary tree class prediction

This tool compukes a binary tree classifier which can be used for predicting the class of a new sample, At
each stage (tree node), classes are divided inka bwo groups, Cross-validation mis-classificakion rate is used
ko characterize the quality of the division. A division with the lowest mis-classification rate is used as a

node of the kree, Then, procedure is repeated for each branch with bwo or more classes,

Binary tree class prediction options

— Binary Tree opkions: — Suppart vectar machine parameters;
Use K-fold cross-validation rather than el (e FErameleri I—
r leave-one-out cross-validation algorithm, ' 2 ! 1
Walue of K (defining k- I 10 Weight of misclassifications in Class 1
relative ko Class 2 {where Class 1
[ Do cross-validation of the entire algorithm, denotes the class label which would
i ] come first in an alphanumeric sorting of I 1
Do ot splik classes if the best the class labels):
achiewvable error rate is more than:| 0.5
— Mame to use for output Files:
BinaryTreePrediction [ Perform GO Observed ws, Expected analysis,
Cancel | Reset | Help
T T oot L T T T Mears DELWEEN LD Classes =
all genes passing the Select gene subsets exceeding:
Filker.

(04 Cancel | I Opkions Reset | Help
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Ml M o F

Survival Risk Prediction

This tool is used For Survival Risk Prediction based on the Supervised Principal Components method.
(Bair, E. and Tibshirani, R, PLo3 Biology 2:511-522, 2004)

— Experimental design:
— Skakus column:

— Find gene lists determined by:

(0 = censared, 1 = death)

| =l
— Calumn defining survival kime:

! El

Significance threshold of Cox
Miodel:

0.001

Mumber of Principal Components
{1-10%:

T
—

[~ aAverage over replicates of:

| I~

[ Use separate test set

— Column conkaining “training", “predict”
"exclude" labels:

| =

— Covariakes
[~ Clinical Covariates

— Calumn defining Covariakel: —]

| =l
— Calumn defining Covariakez: —

| I

— Calumn defining Covariaked: —

| I

MOTE: This analvsis is currently set ko run on all genes passing the Filker,

Select gene subsets

Ik Zancel |

Options | Reset |

ent descriptors / Gene annotations £ Filtered log intensity / Gene identifiers ¢ Scatterplot £ Cluster vie [4 |
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Survival Risk Prediction

This kool is used
(Bair, E. and Til

— Experimental
— Status columnn
(0 = censore

o

— Calurmn definir

—

r Average ove

I

[ Use separate

— iZalumn conkainij
"exclude" [abel

I

MOTE: This an

|— Cross Yalidation Method:

Survival Risk Options

Risk Groups
* 2-Risk Groups

Prognostic Inde:x
Percentile:

™ 3-Risk Groups

e

% |eave One Qut CW

i 10- Fold v

— Log Rank Test:

Murmber of permutations Far

|- Perform Permukation kesks

K

Zancel

100
significance af the log rank tesk;
— Mame to use for oukput Files:
I survivalRiskPrediction
Ik Cancel | Reset | Help
I Options Reset

e subsets
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(R R RN R

— b

2

3

Age C

PUILIAENsongl SLaiig
Class comparison
Class prediction

Survival analysis

Quankitakive trait analysis 3

Filter and subset the data

F = T

D_xfs!MeduIn we Medulo we AT/RT

ATHT
ATHT

Epe—

Plugins

Uitilities

Help

About BRE-ArrayTools
About R-COM

License agreement

PHET

FPHET

FPHET

FHET

PMET
0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
2 Medulloblastoma
0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
0 Medulloblastoma
1 Medulloblastoma
0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma

FMET
FHET
FHET
FHET
FHET

Analysis of Yariance

AMOYA on log intensities

ANOYA For Mixed-EFfects Model
Time Series Analysis

Fandom Farest For class predickion
Class prediction by bop scaring pairs
M ws & plok

Pairwise Correlation Plok
armoothed COF

Extract selected genes

Export 1 Color Daka To R

Export 2 Color Daka To R,

Load Plug In

Manage Plug Ins

Create Plug In

Advanced Plug In Editor

[Medullobla Medulloblastoma
kMedullobla Medulloblastoma
Medullobla Medulloblastoma
fedullobla Medulloblastoma
Medullobla Medulloblastoma
Medullobla Medulloblastoma
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I SiteM Stage | SurvStatusT Sta
CNS
CHE
CNS
CNS
CHS
=0 1
a 1
a 1
=[] 1
=0 1
a 1
a 1
= 1
a 1
a 1
M =0 1
a 1
=0 1
a 1

ent descriptors / Gene annotatio

Analysis of Variance

Colurmn of exper descriptar sheet For Factor &
Colurn of exper descriptor sheet For Factor B
olumn of exper descriptor sheet For Factor C
Colurmn of exper descriptar sheet For Factor O

Column of exper description sheet For indicatar
of included arrays

Column of exper descriptor sheet For kechnical
replicates

Threshold p value faor testing effects

Threshaold p walue For testing the model

Threshold False discovery rate For tesking
effects

Threshold False discovery rake For kesting the
rodel

Model Forrmula

Blocking Factor(s)

IJse Randaom Variance Model

array

Dix

Medula Type
Medula Stage
Sex

Age at Dx
Survival fmonths)

‘

001

001

-

Submit

Yiew README
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[ anova.txt - Notepad
Fil=  Edit

LA R R R R SRR SRR SRR SRR R SRR SR R S

HH O pAME OF THIS PLUG-IM: o

LR R R R R R R R R R R R R R R R R R R R R R R R R R

Formak

Wiew  Help

!
T Site M St

CMS Analysis of wvariance (anowva) for each gene.
CHE
TR R R OO R R R RO
ChS #H  PURPOSE OF THIS PLUG-IM: W%
CNS LR TR R TR R TR R TR TR TR T TR T T e R
CNS Thi= plug-in performs an analysis of wvariance for relating the
log-ratio or Dg—signaW expression to specified factors. A separate
Aancva model ds Fitted for each gene. All factors are considered fixed
effects.
The F-test used for statistical significance testing is based on the Tikelihood
ratio test or type III sum of squares dn SAS terminDWDgy. That means that the
significance of each factor is adjusted for all other factors of the model.
HEHHHHEHHHHE R EE AN
¥4 USING THIS PLUG-IN: e
I:I TR R R OO R R R RO
>
To run this function, the user should dnput the following:
. Column of exper descriptor sheet for factor A
=0 Column of exper descriptor sheet for factor B (can be empty)
Column of exper descriptor sheet for factor C {can be empty)
=0 Column of exper descriptor sheet for factor 0 (can be empty)
Ccolumn of exper descriptor sheet for indicator of dncluded arrays
tcan be empty)
Column of exper descriptor sheet for technical replicates
=0 fcan be empty)
Threshold p walue for testing effects
Threshold p value for testing the mode]
Threshold false discovery rate {(Benjamini & HDchber?, 15557 for testing effects
M= Threshold false discovery rate for Testing the mode

Model formula {e.g. A+B+AIED. See next section for details how to
s?ecify a model formula.

Blocking factors fe.g. B or B,C)

Use rRandom variance mode]l fa checkbox)

The "Column of exper descriptor sheet for indicator of included arrays"
is used to include arrays we are only dnterested in. For arrays we
don't want them to be included in analyses, we should Teave blank wvalue
in this column. we can put any value other than blank in this column
for arrays we are interested in. If nuthin? is specified in the dialog,
all arrays with non-empty factor Tlabels will he used.
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a

ENERENNRSEL ANOVA for Mixed-Effects Model
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ent descriptors / Gene annotatio

Colurmn of exper descriptar sheet for Factor &
Column of exper descriptor sheet For Factor B
Colurmn of exper descriptar sheet For Fackor C

Column of exper descriptor sheet For random
factor

Column of exper description sheet For indicator
of included arrays

Column of exper descriptar sheet Far kechnical
replicates

Threshaold p walue For kesting Fixed effects

.y o ' p ___Q J F = T U

Array

D

Medulo Type
Medula Skage
Sex

Age at D
Survival fmonths)

001
Threshold p value For testing the model|  qnq
Threshald false discovery rate Far testing fixed| 4
effects
Threshold False discovery rate For testing the|
rnodel
Model Formula
Submit
Yiew README
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I anovamix.txt - Notepad

| | L I File Edit Format View Help

T SltE M Stage SUWSTETUET Sta N T T T T T T T T T T T T T OO OO

WH o pAME OF THIS PLUG-IM: o
B R BB B R B R R R

CHE
ChHS Linear mixed-effects model for each gene.

CNS o o o o o o o o o o o o e o e e e e e e e

CHS WW  PURPOSE OF THIS PLUG-IM: W

CNS C LG RaR RR RRR RR CRRR RR TRR TRR TRCR R

clThis plug-in fits data to a Tinear mixed-effects model for esach gene
and computes anNova for a user's specified model. only one random factor

ol can be specified in the mixed-effects model. This model 4s useful for
time series data with specimens collected from each subject at multiple

Atime points. The subjects may have different characteristics of interest,
such as diseased or normal, treated or non-treated, male or female, but

ol the genes differentially expressed among the subjects not related to those
specified factors may not bhe of dnterest. AWthDu?h a fixed effects model

cd=uch as in the basic amnova provided in another plug-in could be used, if there
are many subjects, then considering the subjects as a random factor can prowvide
more degrees of freedom for error estimation and potentially greater statistical
power Tor testing the effects of interest. This mixed-effects model i=, however,
much more computationally dntensive than the standard fixed effects model provided
in the other plug-in.

=0

=

-0 Th

=0

The F-test s based on the T1ikelihood ratio test or type IITI sum of
sguares in SAS's terminology. That means that the
significance of each factor is adjusted for all other factors of the model.

=

B R BB BB R R BB R R R
WHOUSING THIS PLUG-IM: L]

LG RaR RR RRR RR CRRR RR TRR TRR TRCR R

=0

=

To run this function, the user should input the following:

Ccolumn of exper descriptor sheet for factor A

Column of exper descriptor sheet for factor B (can be empty)
. Column of exper descriptor sheet for factor C (can be empty)

0 1 . Column of exper descriptor sheet for random factor

ent descriptors / Gene annotatio %glﬁmgeuzmgigﬁr descriptor sheet for indicator of included arrays
Column of exper descriptor sheet for technical replicates
(can bhe ampty)
Threshold p wvalue for testing fixed effects
Threshold p walue for testing the model
Threshold false discovery rate (Benjamini & Huchber?, 15557 for testing fixed effects
Threshold false discovery rate for testing the mode
Mode]l formula (e.g. A+B+A:EBE].

M =0
a

RN T PSR SN U U U T QU

=0
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T Site M Stage

CNS
CHE

CHE
CHE
CHE

=0

=0
=0

=0

M =0

=0

=

=

=

a

a

Surstatus T Stage

M o F o R & T
Age Code Medula vs Glio vs PMEhabdo ws!Meduln vs Medulo vs AT/RT
AT/RT AT/RT
AT/RT AT/RT
ATRT ATRT

Time Series Analysis

Column of exper descriptar sheet Far time

Zolumn of exper descriptor sheet for class

Column of exper description sheet For indicatar
of included arrays
Threshold p walue for testing effects

Threshold False discovery rate For besking
effects

Array

D

Medulo Type
Medula Skage
Sex

Age at D
Survival (fmonths)

Submit
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1

2 1 Medulloblastoma
0 kedulloblastoma
3 1 Medulloblastoma

1 Medulloblastoma

Medullobla Medulloblastoma
fedullobla Medulloblastoma
Medullobla Medulloblastoma
Medullobla Medulloblastoma
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I timeseries.txt - Notepad

J K L I File Edit Format Miew Help
T Site b StEgE SUWSTETUETSTEQE .-"JHQE R R R R
WH  NAME OF THIS PLUG-IM: LIS
I T T P P R IR TR P P P P IR R TR P PR R PR TR R N
CHS
CNS Time series analysis.
———
ChS m T T R R A T TR TR TR Y
ChS —

PURPOSE OF THIS PLUG-IM: ¥¥
S R TR L TR T TR TR p R TR PRI TR IR LU LSRRI RPN

This plug-in can be used for regression analysis of time series
expression data. In its simplest form (model A}, the genes whose
expression are varying over time are identified. A quadratic function
is it to the expression data of each gene and the hypothesis is that the
Colff Tinear and guadratic coefficients are simultanecusly zero. The genes for
which this hypothesis is rejected are identified. The tests are performed
colflat a significance lewvel specified by the user and also at a False discovery
rate (FDR) specified by the user. Two 1ists of significant genes are
Column g produced, one for the specified significance lewel threshold and one for
the FOR threshold. To fit this model, the user must provide a column in
the experiment descriptor worksheet specifying the time point for each
array. This column should be strictly numeric and should not contain
Thdl 2 Tphabetic characters. The entry in the column should bhe blank if the
array is to be excluded from the analysis. The arrays at the same time
points can represent either technical or biological replicates, but
the two kinds of replicates should not be combined in the same analysis.
This plug-in is not appropriate for nested data where the same subject is
sampled at different time points.

=0

=

=0
=0

=

Model B is for ddentifying genes that are changing owver time, but

where there is a class wariable to adjust for. For example, there could
be two strains of mice included in the experiment or arrays were from
two different print set batches. For mude? B it is assumed that the
variation in gene expression over tTime iz the same for each class. The
output also indicates which genes are differentially expressed among
the classes uniformly over time.

=0

=

M =0 2

a

RN T PSR SN U U U T QU

=0 3 Model < s similar to model B but the wariation in gene expression over

a 1 time is permitted to differ among the classes. The output of model
ent descriptors /' Gene annatations £ Fitg identifies these genes for which the wvariation over time is different
for different levels of the class variable. These genes are identified
bazed on the user specified significance level and bhased on the user
specified FDR. For genes whose variation over time does not significantly
wary among <lasses, model B is it to determine whether the gene is wvarying
over time uniformly for each classes. Model C s useful for experiments
where the class wariable represents a treatment indicator.

Ear data withnitr 3 clas=s wardiahle tThe anows wmodel takes +he form:
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o F = T

J K
T Site M Stage
CMNS
CHS
CHS
CMS
CMNS
=0
0
0
=0
=0
0
0
=0
0
0
=0
0
=0
0

Surstatus T Stage  |Age Code Medulo vs |Glio vs P
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1

ANOYA on log intensities

Column of exper descriptor sheet: for red
channel class

Column of exper descriptar sheet For green
channel class

Column of exper description sheet For indicatar
of included arrays

Column of exper descriptor sheet For kechnical
replicates

Threshold p walue faor testing effects

Threshold False discovery rate For tesking
effects
Red intensity minimum

Green intensity minimum

Rhabdo ws!Meduln ws Medulo ws AT/RT

Medula Type
Medulo Stage
SE

age ak D
Survival {months)

d

100

100

IJse Randaom Wariance Model r

Submit
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1 Medulloblastoma

Medullobla Medulloblastoma
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£ anovachnnl.txt - Notepad
File Edit Yiew Help

LA R R R R TR R R R R R R R R R SR R S

WH o pAME OF THIS PLUG-IM: HH

Fatrnak

T SiteM Stage | SurStatusT Stage | Age

CNS lNﬂ“lu AR TR R R R R TR R TR R T T T P PR R TR T T T T P R T
CNS ANOWA on Tog intensities for each gene.
ChHE
R R R R R R SRR T R R R R R T R R T SRR R Tl S
ChS W%  PURPOSE OF THIS PLUG-IM: bl
S R TR L TR T TR TR p R TR PRI TR IR LU LSRRI RPN
ClThere are two steps for running ANCova in this plugin.
The first step is to normalize log intenzit¥ for each channel
Coluffand the second step 15 to do AWOWA on normalized log intensity.
Column f Stepl: Mormalize each Tog intensity by the following
normalization model {underline denotes subscript):
Calumn
w_fadcgl = mu + A_a + AD_{ad} + el_{adcgl ---- (1D
where
w_fadcgl 1s the Tog intensity,
=0 1 mu is the overall ?Dg intens?&y mean walue,
] 1 A_a 15 the effect of the array a,
0 1 AD_fad} is the interaction of array a and dye d,
el_[adcg} 15 the random noise,
=0 1 c s the index of class{variety).
=0 1
0 1 we assume each effects are fixed., so {a_al and {ap_fad}}
0 1 satisfy some identification conditions.
=0 1 after Fittin? the normlization model, the residuals
0 1 tnormalized Tog intensityl), r_{adcg} are ohtained,
g g a :I‘ r_{adcg} = yv_fadcgl - “hat{mu} - “hat{al_a - “hat{ap}_{ad} --—- (2)
, =
0 1 Step?: Fit the normalized log intensity by the following aNOwva model
=l T 1 r_fadcgl = mu_g + alpha_{ag} + beta_{dg} + class_{cg} + e2_{adcg}l ---- (3]
ent descriptors / Gene annotations £ Filtd where

mu_ﬁ is the gene-specific average log dntensity,

alpha_f{ag} is the gene-specific arra¥ effect (spot effect],
beta_{dgr s the gene-specific dye effect,

class_{cgr is the gene-zpecific class (wariety) effect,
ez_[adcg? i the random noise.

Again, we assume each effects in model (33 are fixed.
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Class comparison
Class prediction

Survival analysis

Quankitakive trait analysis 3

Filter and subset the data

Plugins

Litilities

Help

About BRE-ArrayTools
About R-COM

License agreement

F = T

D_xfs!MeduIn we Medulo we AT/RT

ATHT
ATHT
ATRT
ATRT
ATIRET

Getting skarked »

Manuals 3

PHET

FPHET

FPHET

FHET

PMET
0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
2 Medulloblastoma
0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
0 Medulloblastoma
1 Medulloblastoma
0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma

FPMET
FMET
FMET
FMET
FMET

Suppork »

Cverview of analysis kools

Beqin the kutorial

TE TR
PHET
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FPHET

FPHET

FHET

PMET

Medullobla Medulloblastoma
kMedullobla Medulloblastoma
Medullobla Medulloblastoma
fedullobla Medulloblastoma
Medullobla Medulloblastoma
Medullobla Medulloblastoma
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Medullobla Medulloblastoma
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fedullobla Medulloblastoma
Medullobla Medulloblastoma
Medullobla Medulloblastoma
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Class prediction 3 |
I Survival analysis 3 R 5 T a
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Filter and subset the data ATRT
Plugins 3 AT/RT
= AT/HT
Ltilities 3 ATRT
Help * | Getting started » |
About BRE-ArrayTools Manuals ¥ User's Manual
About R-ZoM Support » Plug-ins Guide
. License agrlIEEmEI‘lt IF'NET o . Sample Des-:lripth:nn af Metlhl:n:ls For Publications
FHET FHET FHET
FHMET FHMET FHMET
FHMET FHMET FHMET
FMET FMET FMET
PHMET PHMET PHMET

0 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
1 Medulloblastoma
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0 Medulloblastoma
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0 Medulloblastoma
1 Medulloblastoma
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Evaluating a Classifier

* “Prediction is difficult, especially the
future.”

— Neils Bohr

* Fit of a model to the same data used to
develop it is no evidence of prediction
accuracy for independent data.



Evaluating a Classifier

* Fit of a model to the same data used to develop
it is no evidence of prediction accuracy for
iIndependent data

— Goodness of fit vs prediction accuracy

« Demonstrating statistical significance of
prognostic factors is not the same as
demonstrating predictive accuracy

* Demonstrating stability of identification of gene
predictors is not necessary for demonstrating
predictive accuracy



Evaluating a Classifier

« The classification algorithm includes the
following parts:
— Determining what type of classifier to use

— Gene selection

— Fitting parameters
— Optimizing with regard to tuning parameters

* If a re-sampling method such as cross-validation
Is to be used to estimate predictive error of a
classifier, all aspects of the classification
algorithm must be repeated for each training set
and the accuracy of the resulting classifier
scored on the corresponding validation set



Split-Sample Evaluation

* Training-set
— Used to select features, select model type, determine
parameters and cut-off thresholds
* Test-set

— Withheld until a single model is fully specified using
the training-set.

— Fully specified model is applied to the expression
profiles in the test-set to predict class labels.

— Number of errors is counted

— ldeally test set data is from different centers than the
training data and assayed at a different time



Leave-one-out Cross Validation

 Omit sample 1

— Develop multivariate classifier from scratch on
training set with sample 1 omitted

— Predict class for sample 1 and record whether
prediction is correct



Leave-one-out Cross Validation

* Repeat analysis for training sets with each
single sample omitted one at a time

e e = number of misclassifications
determined by cross-validation

* Subdivide e for estimation of sensitivity
and specificity



Cross validation is only valid if the test set is not used in
any way in the development of the model. Using the
complete set of samples to select genes violates this
assumption and invalidates cross-validation.

With proper cross-validation, the model must be
developed from scratch for each leave-one-out training
set. This means that feature selection must be repeated
for each leave-one-out training set.

The cross-validated estimate of misclassification error is
an estimate of the prediction error for model fit using
specified algorithm to full dataset

If you use cross-validation estimates of prediction error
for a set of algorithms indexed by a tuning parameter
and select the algorithm with the smallest cv error
estimate, you do not have a valid estimate of the
prediction error for the selected model



Prediction on Simulated Null Data

Generation of Gene Expression Profiles

* 14 specimens (P; is the expression profile for specimen i)
* Log-ratio measurements on 6000 genes

* P; ~ MVN(O, lggg0)

» Can we distinguish between the first 7 specimens (Class 1) and the last 7
(Class 2)?

Prediction Method
« Compound covariate prediction (discussed later)

« Compound covariate built from the log-ratios of the 10 most differentially
expressed genes.
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ABSTRACT

Muotivation: In genomic studies, thousands of lealures are
collected on relatively few samples. One of the goals of
these studies ks to bulld classfiers to predict the outcome of
future obeervations, Thers are three inherant steps to tis
procass: feelure selection, model selection, and prediction
sesessmant. With & focus on prediction assessment, We comm-
pare several methods for estimating the “rue’ prediction error
of a pradicticn modal in the presance of feature selaction,
Resulis: For small studies where features are selected from
thousands of candidates, the resubstitution and simple split-
sample estmates are sericusly biased. In these small samp-
ez, laave-ons-out (LOOCY), 10-old crass-validabon (CWV),
and the 832+ booltsirap have tha smallest bias for diago-
nal discriminant analysis, nearast naighbeor, and dassification
Irgas, LOOQCV and 10-fold GV have tha smallast bias for linear
discriminant analysis. Additionally, LOOGV, 5- and 10-fld GV,
and tha B32+ boatstrap hava tha kowes! maan squara arrar,
Tha B32+ bootstrap is quite biasad in small sampla sizes
with strong signal fo nolse ralios. Differences in perfarmancs
amaong resampling methods are reduced as the number of
specimens available increase.

Avnilability: A complate compilalion of resulls in lables and
figures |s available in Molinaro o ol (2005} R code for
simulalions and analyses is available from the authors,
Contact: Bnnette molinarofiiyele edu

1 INTRODUCTION

In genemic experiments one frequently encounters high
dimensional data and small sample sizes, Microarsays simul-
tnecusly moendior expression levels For several thonsands
of genes. Pretgomic profiling swdies using SELDI-TOF
(surface-entinced bser desorption and donization tme-of-
flight] measure siee and eharge of predeins and profein frag-
ments by mass speciroscopy, and result imoup to 15,000
imbengity levels at prespecified miass values for each spectrom.
Sample sizes m such experimenis are rppically less than LK.

1o i commesponideios sl b siessal

L iy studies observations are knowin o belong to pre-
determined classes and the task is to budd predictors or
classifiers for new observations whose class is unknown
Deciding which genes or proteomic measurements o include
in the prediction is called fowiure selecilon amd is 8 eru-
cial step in developing a class predicior, Including oo many
noisy variahles reduwces accuracy of the prediction and may
lead 1o ever-fiing of data, resulting in promising but often
non-reproducible resulis {Ranscholl, 2004).

Amnodher difficulty is model selection with numerous ¢las-
sification models available. An imporant siep in reporning
resulis is assessing the chosen model™s error rale, or gene-
ralzzability. In the absence of independent validation dat, &
commmon approach o estmatng predictve aceuracy 15 hased
o some form of resampling the ongimal doga, ep., eross-
walidation. These techmiques divade the data mto o learming
sel and o test set and range n complesity from the popular
learning-test gplit o v-fold cross-valdation, Momte-Carlo -
fold cross-valdatron, and bestsirap resampling. Few compa-
risons of stndard resampling methods have been performed
to v, aved ol of them exhibit imitations that make their
conclusions inapplicable o most genemic seitings, Barly
comparizons of resampling techniques in the leerature are
focussed on model selection a8 opposed to prediction erros
estmation |Breiman and Spector, 19462, Burman, 19890, In
two recent assessments of resampling technigues for error
estimation {Braga-Meto and Dougherty, 2004, Efron, 2004),
feature selection wis nod included as part of the resampling
procedures, causing the conclusions 1o be inappropriate for
the high-dimensional sening.

We have performed an extengive comparison of resamp-
ling methods 1o estimate prediction error using simadated
{large signal 1o noise mitol, microamay {ntermediate signal
1o noise ratio} and proteomic data (low signal 1o noise o),
encompassing increasing sample sizes with large numbers
of features. The mmpact of festure selection on the perfor-
mance of vanous cross validation owethods s highlighied.
Ihe results elucidate the "best” sesampling echnigues for

1) Dixiord Universty Press 2005



Simulated Data
40 cases, 10 genes selected from 5000

Method Estimate Std Deviation
True 078

Resubstitution .007 .016
LOOCV .092 115
10-fold CV 118 120
5-fold CV 161 127
Split sample 1-1 345 185
Split sample 2-1 205 184
632+ bootstrap 274 .084




DLBCL Data

Method Bias Std Deviation | MSE
LOOCV -.019 072 .008
10-fold CV -.007 .063 .006
5-fold CV .004 .07 .007
Split 1-1 .037 A17 .018
Split 2-1 .001 119 017
632+ bootstrap| -.006 .049 .004




Simulated Data

40 cases

Method Estimate Std Deviation
True 078

10-fold 118 120
Repeated 10-fold |.116 109

5-fold 161 127
Repeated 5-fold 159 114

Split 1-1 345 185
Repeated split 1-1 |.371 065




Permutation Distribution of Cross-
validated Misclassification Rate of a
Multivariate Classifier

 Randomly permute class labels and repeat the
entire cross-validation

* Re-do for all (or 1000) random permutations of
class labels

« Permutation p value is fraction of random
permutations that gave as few misclassifications
as e in the real data



Common Problems With Internal
Classifier Validation

* Pre-selection of genes using entire dataset

 Failure to consider optimization of tuning
parameter part of classification algorithm

—Varma & Simon, BMC Bioinformatics 2006

* Erroneous use of predicted class in
regression model



Incomplete (incorrect) Cross-
Validation

* Publications are using all the data to select
genes and then cross-validating only the
parameter estimation component of model
development

— Highly biased
— Many published complex methods which make strong
claims based on incorrect cross-validation.

« Frequently seen in complex feature set selection algorithms
« Some software encourages inappropriate cross-validation



Incomplete (incorrect) Cross-
Validation

Let M(b,D) denote a classification model developed on a
set of data D where the model is of a particular type that
IS parameterized by a scalar b.

Use cross-validation to estimate the classification error
of M(b,D) for a grid of values of b; Err(b).

Select the value of b* that minimizes Err(b).

Caution: Err(b*) is a biased estimate of the prediction
error of M(b*,D).

This error is made in some commonly used methods



Complete (correct) Cross-
Validation

Construct a learning set D as a subset of the full set S of
cases.

Use cross-validation restricted to D in order to estimate
the classification error of M(b,D) for a grid of values of b;
Err(b).

Select the value of b* that minimizes Err(b).

Use the model M(b*,D) to predict for the cases in S but
not in D (S-D) and compute the error rate in S-D

Repeat this full procedure for different learning sets D, ,
D, and average the error rates of the models M(b,*,D;)
over the corresponding validation sets S-D,



Does an Expression Profile Classifier
Predict More Accurately Than Standard
Prognostic Variables?

* Not an issue of which variables are significant
after adjusting for which others or which are
Independent predictors
— Predictive accuracy and inference are different

* The two classifiers can be compared with regard
to predictive accuracy

* The predictiveness of the expression profile
classifier can be evaluated within levels of the
classifier based on standard prognostic
variables



External Validation

« Should address clinical utility, not just predictive
accuracy
— Therapeutic relevance

« Should incorporate all sources of variability likely
to be seen in broad clinical application

— Expression profile assay distributed over time and
space

— Real world tissue handling

— Patients selected from different centers than those
used for developing the classifier



Survival Risk Group Prediction

Evaluate individual genes by fitting single variable
proportional hazards regression models to log signal or
log ratio for gene

Select genes based on p-value threshold for single gene
PH regressions

Compute first k principal components of the selected
genes

Fit PH regression model with the k pc’s as predictors. Let
b,, ..., b, denote the estimated regression coefficients

To predict for case with expression profile vector X,
compute the k supervised pc'sy,, ..., y.and the
predictive index A =b,y,+ ... + b, Y,



Survival Risk Group Prediction

LOOCYV loop:

— Create training set by omitting i'th case
Develop supervised pc PH model for training set

Compute cross-validated predictive index for i'th
case using PH model developed for training set

Compute predictive risk percentile of predictive
index for i'th case among predictive indices for
cases in the training set



Survival Risk Group Prediction

* Plot Kaplan Meier survival curves for
cases with cross-validated risk percentiles
above 50% and for cases with cross-
validated risk percentiles below 50%

— Or for however many risk groups and
thresholds is desired

« Compute log-rank statistic comparing the
cross-validated Kaplan Meler curves



Survival Risk Group Prediction

* Repeat the entire procedure for all (or large
number) of permutations of survival times and
censoring indicators to generate the null
distribution of the log-rank statistic

— The usual chi-square null distribution is not valid
because the cross-validated risk percentiles are
correlated among cases

« Evaluate statistical significance of the
association of survival and expression profiles
by referring the log-rank statistic for the
unpermuted data to the permutation null
distribution



Survival Risk Group Prediction

* Other approaches to survival risk group
prediction have been published

* The supervised pc method is implemented
in BRB-ArrayTools

 BRB-ArrayTools also provides for
comparing the risk group classifier based
on expression profiles to one based on
standard covariates and one based on a
combination of both types of variables




Sample Size Planning
References

K Dobbin, R Simon. Sample size
determination in microarray experiments
for class comparison and prognostic
classification. Biostatistics 6:27-38, 2005
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